Circumventing tumor resistance to chemotherapy by nanotechnology.
نویسندگان
چکیده
Patient relapse and metastasis of malignant cells is very common after standard cancer treatment with surgery, radiation, and/or chemotherapy. Chemotherapy, a cornerstone in the development of present day cancer therapy, is one of the most effective and potent strategies to treat malignant tumors. However, the resistance of cancer cells to the drugs remains a significant impediment to successful chemotherapy. An additional obstacle is the inability of chemotherapeutic drugs to selectively target tumor cells. Almost all the anticancer agents have severe side effects on normal tissues and organs. The toxicity of currently available anticancer drugs and the inefficiency of chemotherapeutic treatments, especially for advanced stages of the disease, have limited the optimization of clinical drug combinations and effective chemotherapeutic protocols. Nanomedicine allows the release of drugs by biodegradation and self-regulation of nanomaterials in vitro and in vivo. Nanotechnologies are characterized by effective drug encapsulation, controllable self-assembly, specificity and biocompatibility as a result of their own material properties. Nanotechnology has the potential to overcome current chemotherapeutic barriers in cancer treatment, because of the unique nanoscale size and distinctive bioeffects of nanomaterials. Nanotechnology may help to solve the problems associated with traditional chemotherapy and multidrug resistance.
منابع مشابه
Circumventing Antineoplastic Drug Resistance: When Tumor Cells Just Say “No” to Drugs
Antineoplastic drug resistance represents a specialized case of drug tolerance since cells most responsive to therapy are destroyed. Clinically, drug resistance may be observed at the onset of therapy or is acquired later by a tumor cell population over time due to a combination of spontaneous genetic mutations and selection by cytotoxic chemotherapy. Numerous mechanisms of drug resistance have...
متن کاملNanotechnology application in cancer treatment
Chemotherapy has been the main known treatment for cancer diseases. However, its achievement rate remains low, mainly because of the restricted accessibility of drugs to the tumor tissue, their painful toxicity, and development of multi-drug resistance. In recent years, either better understanding of tumor biology or development of the ever-growing field of nanotechnology has proposed new treat...
متن کاملTargeted Nanotechnology in Glioblastoma Multiforme
Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median surviv...
متن کاملNanotechnology-based approaches in anticancer research
Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor marg...
متن کاملIs Tc99m-MIBI scintigraphy a predictor of response to pre-operative neoadjuvant chemotherapy in Osteosarcoma?
Objectives: Multidrug resistance (MDR), which may be due to the over expression of P-glycoprotein (Pgp) and/or MRP, is a major problem in neoadjuvant chemotherapy of osteosarcoma. The aim of this study was to investigate the role of Tc-99m MIBI scan for predicting the response to pre-operative chemotherapy. Materials and Methods: Twenty-five patients (12 males and 13 females, aged between 8 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 596 شماره
صفحات -
تاریخ انتشار 2010